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Distribution of the largest aftershocks in branching models of triggered seismicity: Theory
of the universal Bath law

A. Saichev*? and D. Sornett&**
Mathematical Department, Nizhny Novgorod State University, Gagarin prosp. 23, Nizhny Novgorod 603950, Russia
?|nstitute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095
3Institute of Geophysics and Planetary Physics and Department of Earth and Space Sciences, University of California,
Los Angeles, California 90095
“Laboratoire de Physique de la Matiere Condensée, CNRS UMR 6622 and Université de Nice-Sophia Antipolis,
06108 Nice Cedex 2, France
(Received 20 January 2005; published 31 May 2005

Using the epidemic-type aftershock seque(i€€AS) branching model of triggered seismicity, we apply the
formalism of generating probability functions to calculate exactly the average difference between the magni-
tude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude
difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal
behavior known as Bath’s law. Our theory shows that Bath's law holds only sufficiently close to the critical
regime of the ETAS branching process. Allowing for error bars +0.1 for Bath’s constant value around 1.2, our
exact analytical treatment of Bath’s law provides new constraints on the productivity experend the
branching ration: 0.9=a=<1 and 0.8sn=<1. We propose a method for measuriadased on the predicted
renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also
introduce the “second Bath law for foreshocks:” the probability that a main earthquake turns out to be the
foreshock does not depend on its magnitpde
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[. INTRODUCTION difference in magnitude between a mainshock and its largest

This paper is part of our continuing effort to develop aaf_tershock is 1.2 regardless of the mainshock magnitude,
o L . within a completely consistent theory taking into account all

complete theory of seismicity within models of triggered yonerations of triggered events. Our present results signifi-

seismicity, which allows one to make quantitative predlcuonscan,dy improve on the numerical results [df4] by demon-

of observables that can be compared with empirical dat ing th ial rol | h ftri
[1-3.6-8. We study the general branching process. Calle(%tratlngt e essential roles played by the cascade of triggered

. . vents and the proximity to criticality in order to obtain
the epldeml_c-typ_e a}ftershock sequer(d‘s‘l_’AS) model of Bath’s law and by providing improved constraints on the key
triggered seismicity, introduced by Ogata in the present fom?)arameters of the ETAS model. In addition, we extend
[9] and by Kagan and Knopoff in a slightly different form

d wh : istical . . qi Bath’s law, which is a statement on the average magnitude
[%O] in w %se rga:nbsltatlsnca propertlelslare r?\geweh. NYifference between the mainshock and its largest aftershock,
[2]. The ETAS model belongs to a general class of branc 'n%y giving the full distribution. Our theoretical framework

processe$11,13, and has in addition the property that the also allows us to calculate precisely the probability that the

variance of the number of earthquake progenies triggered if gest aftershock turns out to be larger than its source, a

direct lineage from a given mother earthquake is mathemaligiiion that is usually interpreted as the source and all
cally infinite. This model has been shown to constitute

Bvents before the | t aftershock being its foreshocks, th
powerful null hypothesis to test against other mod@|sThe ven's hefore e |argest aershock being 1ts Toreshocks, the

o >~ = largest aftershock being reinterpreted as the mainshock of the
advantage of the ETAS model is its conceptual S|mpI|C|tyseigSmiC series g P
based on three independent well-found empirical 1aws ™ rpe haner s organized as follows. Section Il recalls the

(Gutenberg-Richter distribution of earthquake magnitudesyefinition of the branching model of triggered seismicity.

Omori law of aftershocks, and productivity lavand its  ggction 1) presents the generating probability function and
power of explanation of other emp'F'Ca' observatidsee, results on the statistics of the largest aftershock among after-
for instance[3] and references thergin . shocks of the first generation. The GPF for first-generation
Here, we develop a theoretical formulation based on genzgershocks is generalized to aftershocks of all generations in
erating probability functionsGPH to construct the distribu- - g |/ This allows us to predict that the distribution of

tion hOf magf;:.t“dﬁs of the(;argest trl_g_gere?l eyéatge(?t af- magnitudes of the largest aftershock over all aftershock gen-
tershock within the cascade comprising all triggere eVentSg ations is renormalized in the critical regime. This renor-

of a.g'V?nBSOO#,rC? ealrghguakeH.Tkr]ns aIIowsh us rt]o derive the, jization provides a way to calibrate the productivity pa-
empirical Bath's lawn{13,14, which states that the average rameter. Section V puts together previous results to calculate

the average difference in magnitude between the mainshock
and its largest aftershock over all generations. In the critical
*Electronic address: sornette@moho.ess.ucla.edu regime, Bath's law is shown to hold. The value of the aver-
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age difference in magnitude allows us to offer improved con+the earthquake at timg and positiorr; to the seismic inten-
straints on the two key parameters of the ETAS model; thesity at timet in the future and at position.

critical branching ration and the productivity exponent.
Section VI concludes. IIl. STATISTICS OF THE LARGEST AFTERSHOCK

AMONG AFTERSHOCKS OF THE FIRST GENERATION

Il. THE EPIDEMIC-TYPE AFTERSHOCK SEQUENCE A. Generating probability function of aftershocks
BRANCHING MODEL OF EARTHQUAKES of the first generation triggered by an arbitrary mainshock
Consider an earthquake of magnitygevhich we refer to The Poissonian statistics of the aftershocks of the first

as a mainshock, meaning that we are interested in the eart§€neration implies that the generating probability function of
quakes that it trigger&@ftershocks According to the ETAS ~ their numbers reads

model, it generates a random numPR%rof first-generation Lz
aftershocks, which has Poissonian statistics, 04(zp) = (=2, P,(r)Z =D, (6)
( K)Ri r=0
Pp(Rll)) = e"‘“'u—ll, (1)  where we have used), and the angle brackets correspond
(R)! to statistical averaging.
characterized by the conditional average number Let M3,M,, ...,Mgt be the random magnitudes of tR;
(omtre) aftershocks of the first generation triggered by the main-
N, = kplp),  plp) = 107770 (2)  shock. Let us consider the statistical average defined by
Herem, is the minimum magnitude of earthquake capable of R}
triggering other earthquakes, ards a constant. Expression (R _
(2) for u(p) is chosen in such a way that it reproduces the O1(z.mlp) z ;k]:[lH(m M /. @)

empirical dependence of the average number of aftershocks ) o ) ) . .
triggered directly by an earthquake of magnituce(see  WhereH is the Heaviside function. Using the Poissonian sta-
. . . it 1
[15]1@ and references therelrExpreSSK)r(Z) gives the so- tistics of the I’anC_IOI"n numbe®: of E_iftel’ShO_Ck numbers an(_:l
called productivity law of a given mother as a function of its the Gutenberg-Richter law for their magnitudes, we obtain

magnitudep.

The ETAS model requires the specification of the 0,(zmlp) = >, P(NZ[P(m)] = exxzPm-1], (8)
Gutenberg-Richter density distribution of earthquake magni- pr
tudes

Equation(8) gives the GPF of the number of first-generation
p(m) =bIn(1010°M™M), m= m, (3)  aftershocks triggered by some source, whose magnitude is

" ) . equal top. The main difference between the GPR(z,m|p)
such that/p(x)dx gives the probability that an earthquake ¢\ the standard GPD,(z|p) given by (6) is that

has a magnitude equal to or larger thanThis magnitude ®,(zm|p) in (8) describes the statistics only of the se-
distribution p(m) is assumed to be independent of the mag- ulen'ce|sp of first-generation aftershocks, Wh033/e magnitudes

nitude of the triggering earthquake, i.e., a large earthquak . .
can be triggered by a smaller of8d. The cumulativé P(m)] 1:Ma, ... Mg} are all smaller than some given magni

and complementary cumulatije&2(m)] distributions corre-
sponding to(3) are

tudem.
Notice that®,(z,m|p) can be rewritten as

Pm)=1-Q(m), Q(m)=10"m™ = [u(m)]”, 02(z,mlp) = @HMH(m = M), ©)

WhereMi is the largest magnitude over all aftershocks of the
y=bla. (4)  first generation triggered by the mainshock :R)}(in) is the
number of aftershocks for those realizations of aftershocks in
which no aftershocks of the first generation exceed the mag-
nitude m. The transformation fron8) to (9) is an obvious
generalization of the following relation of order statistics

_ _ _ (see, for instancel4]). Let us haveR;=r random values
ML =St + 2 pm)PE-4er-r), () {M1,Mj, ... Mg }. The cumulative distribution of the largest

) ] valueM? in this set is then equal to
where s(t,r) is the average Poisson rate of spontaneous

earthquake sourceSimmigrants,” in the language of epi-

The ETAS model is defined by the conditional Poisson
intensity given the average rate of seismicity at titnend
positionr conditioned on all past earthquakes

i<t

r
1 — 1\\ —
demic branching processeat positionr and at timet. The PM® <m}=(H(m-M") = E H(m=Mj) /. (10
sum is over all past earthquakes: each earthquake is charac- h
terized by its occurrence timg, its magnitudem;, and its The interest in®4(z,m|p) in (8),(9) lies in particular in

location r; in the catalog. The two kernelsV(t-t;) and the fact that, forz=1, it reduces to the probabiliti?,(m|p)
o(r—r;), whose integrals with respect to time and spacethat the largest magnitude among all aftershocks of the first
respectively, are normalized to 1, describe the contribution ofjeneration is smaller tham:
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P:(mlp) = @4(z=1,mp) = PAM} < m} = g *#(») oM 04,(z,m) =F(1 -zP(m)) = [u(m)]7F(u(m)[1 - zP(m)]).
(11) (20)

For m— «, the GPF®,(z,m) given by (20) reduces to the
standard GPF of the random numbgrof aftershocks of the
first generation triggered by some spontaneous source, which
Consider now some spontaneous soyiantributing to  reads
the terms(t,r) in (5)], with magnitudeM,. According to the _ o _
ETAS model, it triggers its own aftershocks sequence inde- 01(2)=0,(zm=) =F(1-2). 29
pendently of all other sequences. Let In the following analysis, the functioR(y) in (19) plays a
crucial role. It is thus useful to state some of its analytical
Mo, My, Mz, ... Mgt (12) properties. Recall thaf(-y,x) in (19) is the incomplete

be the random sequence of magnitutiesludingMy) of the ~ Gamma function, defined blj(a,x)= [ e"'t**dt. Using the
first-generation aftershocks triggered by the spontaneouBaylor series expansidib]
source. The GPF

B. GPF of aftershocks of the first generation triggered
by a spontaneous source

_ o (D%

O,z m) = ' MH(m- M), (13 Pax) =I(e) - 2 o0 22

describing the statistics of the numide¥(m) of aftershocks ;
) - : yields

of first generation(triggered by the spontaneous source of
arbitrary magnitudeM,) and their largest magnitudin® - _ yaoaq__7Y Y 2. .
among the lis{12), can then be calculated following a for- FO) =Ty + 1 =27 1Ky 2(2- y)(Ky) o
mula analogous t@). Specifically, we multiply both sides of (23)

(8) by H(m-p) and apply the statistical averaging, assuming

that p (which in this context is the random magnitulig of In the theory of aftershocks branching processes, the branch-
the spontaneous soulds a random variable distributed ac- ing ration, equal to the average number of first-generation
cording to the Gutenberg-Richter 1a®). In other words, we  aftershocks triggered by some mother earthquake, plays a

calculate the GP®,(z,m) using the relation fundamental role since it controls the subcriticality vs super-
criticality of the process. It is defined as
01(zm) =(H(m~- p)O4(z,m|p)). (14) 4.2
Here, the angular brackets indicates the statistical average n= d—lz .
z=1

with respect to the random magnitugdeof the spontaneous
source. Using14) together with the right-hand side.h.s) Together with(21), it follows that
of Eq. (8), we obtain

dF K
- - d(y) _ _71, (24

By(zm) = f e PIZPM-np)dp. (15) Y ly=0 ¥
my so that, for giverb, «, andn, the constanik in relation(23)

In order to calculate the integral, it is convenient to introducec@n be replaced by

the auxiliary function 1
k=k(y,n)=n{1-—]. (25)
(e oo »‘)/
F(y,x) = g kulp)y do= _f e <mp)yg '
) fx Plp)dp X ) We thus obtain the following first terms in the power expan-
(16) sion of F(y):
=~ —_ Y —
such that F(y) = 1-ny+gy”-dy, (26)
Oz m) = F(L - zP(m),mg) - F(L -zP(m),m). (17  “"e'e 2
-1\” -1
It follows from (4) and(16) that B=T(- y)(ny—) , d= nzu, (27)
4 2y(2~-v)
Fy,x) = yJ e W du = wY(XF(u(X)y), (18) In our paper, we use the truncated relation
K9 F(y) =1-ny+ 8y?, (29
where . . o
which provides an accurate description fefy) for 1<y
7 ey 1y <1.5 andy=<0.2.
F(y)=vy L &m du=y?yT(= y,ky). (19 Taking z=1 in (20) yields the cumulative distribution

function (CDF) P;(m) of the largest magnitud&® among
Substituting (18) into (17) and taking into account that the sequencél?) of aftershocks, including their spontaneous
u(my)=1 yields the following expression: source
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P,=F(Q) - u "F(uQ). (29 aftershocks. In a real data analysis, the statistical properties
) ] o of the difference(34) are obtained conditional on the obser-

The GPFO,(z,m) in (20) describes the statistics of the yation of at least one aftershock, which requires a modifica-
spontaneous source and its first-generation aftershocks, sughn of the expressions above. We are interested in modifying
that all magnitudes, including the magnitude of the spontathe CDF(11) to eliminate the cases wheR¥=0. This cor-
neous source, are smaller tham In the following, we will  responds to obtaining the CDF of the largest magnitude of
consider the possibility that the largest aftershock may bgjrst-generation aftershocks under the condition that the
larger than the source, a situation known in the seismologicahainshock triggers at least one aftershock:
literature as the occurrence of foresho¢kse[3,17,1§ and
references therein The corresponding GPF, averaged over

all possible foreshock magnitudes, is denoted;&s, m) and

1 — g <up)Q(m)
Pi(mlp;1) =1 -Qu(mlp;1), Qu(mlp;1)= e

is obtained formally from(20) by taking the limitwu — oe: (37)
El(z,m) =F(1-zP(m)). (30) The corresponding PDF of the differen(®) reads
g(Wo(vg = 9))
C. Magnitude of the largest aftershock of the first-generation f1(dlp) = Woﬁ, —e<d<p-my (38
aftershocks

The conditional CDR37) differs significantly from the un-
conditional oneg(11) only if the probabilitye™“* that there
fare no aftershocks is close to 1. This occurs for small main-

aftershocks to the first generation of events triggered by th h.OCk. magnitudes. H(.)W small should the m_ainshocks pe for
this difference to be important? Let us define a magnitude

source. This will provide a reference point against which to holdon b
gauge the impact of the multiple generations of aftershockghres 0lpo BY

Before analyzing the conditions under which the empiri-
cal Bath’s law can be obtained from the ETAS model, it is

on Bath’s law. 1 2b

We start from expressiofil) giving the CDFP;(m|p) of ku(p) =20 pg=my+— |0910<m>- (39
the largest magnitud®® among all aftershocks of the first “« @
generation. Substitutin@®),(4) in (11), we obtain For mainshock magnitudgs> p,, the conditional CDR37)

does not differ significantly from the unconditional ofid).

P1(mp) = G[wo(M = p +vo)], 3D |n this case, relation€35) and(38) are approximately equal,
where and the looked for distribution of the differen€®&4) can be
. b taken to be the PDR35) where §e (-»,»). Thus, forp
_ a < > po, the average of the magnitude differen@%) can be
={1- -my) +—lo , Po: g g
vol) ( b)(p Mo) b glo( n(b - a)) approximated by
Wo=bn 10, (32 AJm=p—(Mp) =wp J 39(Wo(vo — 8))dd= vg(p) = viw,
and -
(40
G(x) = exp(—€e™) (33 _ .
. o where v=0.5772 is the Euler constant. Figure 1 shows the
is the well-known limiting extremal Gumbel CDF. exact average differenca’m calculated with(38), its ap-
It follows from (31) in particular that the probability den- proximation (40) valid for sufficiently large mainshocks
sity function (PDF) of the difference > po and the most probable valuem. =vy(p) of the differ-
1_ _ml ence in magnitude between the mainshock magnipudad
Al=p-M} (34)

its largest aftershock. This figure is typical of the strong de-
between the sourcénainshock magnitude and the magni- pendence found for all reasonable values of the parameters
tude of its largest aftershock of the first generation is equal tand distinguishes this result from the empirical Bath's law

which gives a constant value independenppf
£1(81p) = Wog(Wo(vo - ), (35 (whichg pendenpp

where IV. STATISTICS OF THE LARGEST AFTERSHOCK
g(x) = exp(- x - &™) (36) AMONG AFTERSHOCKS OF ALL GENERATIONS

is the PDF associated with the CDB3). Note that the shape A GPF of the agerShOCkS over all generations triggered
and variance of the PDE35) does not depend on the main- y & spontaneous source

shock magnitudep. Only its modeuvy(p) [most probable Due to the mutual statistical independence of different
value of the differencg34)] depends orp and increases branches of triggered earthquakes in the ETAS model, one
linearly with it according to the first equation ¢82). can easily generalize the results for the largest aftershock of

These results treat all aftershock sequences on the sartiee first generation to derive the statistical properties of the
footing and in particular include sequences that have zertargest aftershock over all generations.
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FIG. 1. Exact average of the
differenceA;m=p~(M?) obtained
using (38) (bottom curve bending
down for smallp—-my), its large
magnitude approximation (40)

. (bottom straight lingand the dif-
ferenceATm. =vo(p) between the
mainshock magnitude and the
mode of the magnitude of the
largest aftershock among all after-
shocks of the first generatidip-
per straight ling for n=0.9, «
=0.8, andb=1.

15F
average

05

p_mo

Within the ETAS branching model, taking into account all of the Q defined in(4). Notice that in the limitm— o, Eq.
aftershocks of all generations triggered by the mainshocki43) reduces to the well-known functional equation
amounts to replacing in the r.h.s. of E§) the PDFP(m) of
the magnitudes of single aftershocks by the GIRE, m) for =0,(20) (46)
all aftershocks triggered by some spontaneous source that
have (together with the sourgemagnitudes smaller tham. or the standard GPF
As a result, we obtain the sought GPF of the number of all
aftershocks triggered by the mainshock conditional on all
magnitudes being less thamas

O(zm=x)=0(2) =() (47)

of the random numbeR of all aftershocks triggered by some
0(z,m|p) = (% ™H(m- M,)) = errPIZOEm-1] - (47) ancestor, which has been studied &8].
] ) Similar to the reasoning leading t87), the conditional
Here,M, is the magnitude of the largest aftershock. In par-propability that the magnitude of the largest aftershock ex-
ticular, the complementary CDF of the magnitude of the largceedsm, under the condition that the mainshock triggers at

est aftershock reads least one aftershock, is
Q(mlp) = (H(M, = m)) = 1 —e #r)Am (42) 1 — g ru(PQM
whereQ is defined in(45). Qmlpil) = —— = QUM =1-P(m). (48
Similarly, the functional equation for the GR#(z,m) is o
obtained by replacing if20) both ®; andP(m) by 0 (z,m): It is also of interest to obtain the GP®(z,m) of the

_ _ oy _ number of aftershocks of all generations with magnitudes
Oz m) =F(1-20(zm) - u(MF(um[1 -260(zm)]). smaller thanm that are triggered by some spontaneous
(43) source of arbitrary magnitude. It is given by replacing in the

For z=1, Eq.(43) reduces to an equation for the CBFm)  -N-S- of Eq.(30) P(m) by the GPFO(z,m) given by (43),

of the magnitudeM of the largest evenincluding all after-  Which yields
shocks and the sourcdefined as —
®(z,m) =F(1-2z0(z,m)). (49
0O(z=1,m) =P(m) =P{M < m}. (44)
This equation reads For z=1, this gives the probabilitf?(m) that the magnitude

B of the largest aftershock triggered by an arbitrary spontane-
P=F(Q-p7F(rQ), QM=1-P(m). (45  gys source is smaller than:

The difference betwee@5) and (29) is that(45) is an im- _
plicit equation forP while, in (29), P, is an explicit function P(m) = F(Q(m)). (50)
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3k i

FIG. 2. Plot of the decimal
logarithm of the exact CDR)(m)
and its approximatiort51) (which
5l 4 actually coincidg¢ for n=0.9, «
=0.8, andb=1. Straight lines cor-
respond to the asymptotic&3)
-6 7 and(54).

log Q(m)

_7F i

-8

B. Distribution of the magnitude of the largest aftershock i
of a spontaneous earthquake source of arbitrary magnitude Q(m) = ﬁlo MM m=m. (54)

All quantities defined above require the knowledge of -

Q(m), which has a straightforward statistical meaning: it isFigure 2 shows the logarithiin base 19of the complemen-

the complementary CDF of the magnitude of the largest affa’y CDF Q(m) as a function ofm-my and the two power
tershock of a spontaneous source of arbitrary magnitide aw asymptotic{53) and(54). We have thus shown that the
other words, over all possible source magnitudéiss easy ~ Gutenberg-Richter law can be renormalized from a bare ex-
to calculateQ(m) by solving Eq.(45) numerically. We can Ponentb to a smaller exponeni when the distribution is
also use the algebraic approximatié28) of the function restricted to the set of Iarges_t aftershqcks of spontaneous
F(y) to obtain an explicit and rather precise analytic eXpres_earthquakes of arbitrary magnitudes. This renormalization of

sion of Q(m). Indeed, substituting28) into (45) yields the b value fromb to a is intrinsically a cas.cade phenom-
enon. In other words, it results from the existence of a cas-
1 cade of triggered earthquakes over many generations, as
Q(m) = A -m[wm]”+num)’ (51) shown in detail in[6]. This renormalization proceeds by a

mechanism similar to that of the value of the Omori law
This expression shows that there is a crossover magnitudgom a value 14 to 1-6 [1,2]. It is different from the

m, given by mechanism leading to an expondnt « for the asymptotic
1U(y-1) 1 n branch of the Gutenberg-Richter distribution of all fore-
p(me) = <—1 n) O me=my+ b—loglo(n>, shocks[18].
_ —a _

This prediction(53) offers a method for measuring the
(52) key exponentx controlling the productivity or triggering ef-
ficiency of earthquakes as a function of their magnitude, ac-

separating two regimes with different power laws @m).  q4ing to(2). What is needed to implement this method is a

The first regime declustering technique to identify the spontaneous sources
1 and their largest aftershocks. The statistical declustering
Q(m) = HlU“(m_mO), m=m, (53)  technique of Zhuangt al.[19,20 seems to be particularly

suitable for this purpose.
corresponds to a complementary CDF decaying more slowly Due to the independence between the aftershock se-
than the Gutenberg-Richter |ai),(4), for a<b. In the criti-  quences of different sources in the ETAS model, it is
cal casen=1, m.=c and this regimg53) holds for anym  straightforward to obtain the probability distribution of the
>m,. The second regime recovers the Gutenberg-Richtdargest triggered events among a set rofspontaneous
law sources. The corresponding complementary CDF, giving the
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FIG. 3. Complementary CDF
(55) of the magnitude of the larg-
est event triggered by spontane-
ous sources with random magni-
7 tudes chosen according to the
Gutenberg-Richter  distribution.
i The different curves correspond to
r=1,3,5,7,9,11,13,15 from
bottom to top. Each pair of curves
corresponds tn=0.9 andn=1,
respectively.

Q(mr)

35 4

probability that the largest event triggered over all genera- Q(mlp) =1 -G(wy(m=p+vy)), My<mM=m,.

tions byr sources is larger tham, is equal to (57)
Q(mlr) =1 ~F"(Q(m)). (59 here

Figure 3 pIotsa(m|r) as a function ofm—my, for r running 1 b

from 1 to 15 for «=0.8, b=1 and for two values oh: n U1:—|0910<—>, w; = aIn 10. (58)

=0.9 andn=1. It is clear that most of the largest triggered a b-a

events in aftershock sequences are very small, simply due to i o
the interplay of two factors: most random sources are themEXPression(57) can be further simplified into
selves small and have a small productivity, and the
Gutenberg-Richter distribution makes it much more probable  Q(m|p) ~ Kig-amp) = (1 10°PM0)) ¢ (llo—a(m—mo)>,
that all triggered events have small magnitudes. n n

(59

C. Distribution of the magnitude of the largest aftershock
of a spontaneous earthquake source
of fixed magnitude p

in the tail of Q(m|p), i.e., for p—(1/a)log,o(n/ k) <m. The
rewriting of Q(m| p) under the form shown by the last equal-
o _ _ ity in (59) clarifies its origin: the first factok 10*°~™) js
_ Rath_er than consu_jermg arbitrary source magnitudes, it iHothing but the productivity law(2); the second factor
interesting to determine the complementary CQfn|p,r)  (1/n)10-*™ 0 is the renormalized Gutenberg-Richter law
of the magnitude of the largest event triggeredrbsponta- (53).
neous sources with fixed magnitudes,p,,...,p,. It is For m>m,, we obtain another approximation fQ(m|p)
closely approximated by by replacing in the r.h.s. of E@42) the complementary CDF

r Q(m) by the approximatiori54), which yields

Q(mlp,r) =1 -exg -k QM u(p) | (56)

i=1 Q(mlp) =1-G(w[m=p+uvy(p)]) m=m, (60)

In the following, we restrict our analysis to the case of a

. LI . where
singler=1 spontaneous source which fixed magnitpdén

this case, expressid®6) transforms inta(42). o 1 b(1 -n)

For m<m,, where the crossover magnitudg is defined V= <1 - —>(p -mg) + — Ioglo< ) w,=bIn 10.
by (52), expression42) can be simplified by replacing the b b n(b-a)
exactQ(m) by the approximatior{53), which gives (61)
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FIG. 4. Exact complementary
CDF's Q(m|p) given by (42
(lower curve$, their approxima-
tions (62) (which are actually un-
distinguishable from the exact
functions and the universal ap-
proximations(57) (upper curveg
for n=0.9, b=1, and «=0.8 (y
=b/a=1.25 for four different
values of the spontaneous source

magnitudep.

The following approximation including both regimes Figures 4 and 5 present the dependence of the comple-
<m,, m>m; and laws(57),(60) is obtained from(42) by = mentary CDFQ(m|p) as a function of the magnitude of the
replacingQ(m) by the approximatior{51) largest event triggered by a spontaneous source of fixed mag-

nitude p, for four different values op. The figures show the
Q(mlp) = 1 - exd - kp(p) ) 62 exactQ(m|p) obtained numerically, its approximatidi62)
P A -nu(m) +nu(m)/’ (which is actually undistinguishable from the exact praad
1 T

0.9}

0.8}

0.7+

0.6F

—m =2
2 P
g 05 FIG. 5. Same as Fig. 4 fow
=0.9 (y=1.11).

0.4

0.3F

0.2

0.1

0 1
0 1
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A,m=p-(M,), (65)
03r 1 where M, denotes the magnitude of the largest aftershock
among all events of all generations triggered by the source of
025t 1 fixed magnitudep. Recall that Béth's law states thapm is
independent op and equal to 1.2.
a=0.

Within the ETAS model, the exact value d&f,m is ob-

_ =025 | |
° / / tained as
0.15} 1 o0
A m= —f Q(ml|p;1)dm, (66)
N\ S/ v ai
M whereQ(m|p;1) is given by(48) and the r.h.s. of66) ex-
0.05

presses the fact that the average is performed over sequences
with at least one aftershock.
T T T The two regimes-m<m, giving the asymptoti¢57) and

p-m, m>m. giving the asymptoti¢60)—provide two asymptotic
expressions foA,m. Indeed, calculatingM ) using the ap-

FIG. 6. Plot ofQ:(p) as a function ofp, for n=0.9,b=1, and  proximation (57) and neglecting the boundary effedise.,
different values ofa. The horizontal lines correspond to the con- sypposing thatn e (-, )] yields

stants predicted b{64).

Q.(p)

o

1 b
. L . Apm1201‘1=5=_[|0910(—>‘—V ] (67)
the universal approximatiot67). The comparison between Wy a b-a/ In10

Fig. 4 (_for .0‘:05"8) ?Jnd Fig. 5(for a:0d.9) shows th_at the which is independent gf. Recall thatr=0.5772 is Euler’s
approximation(57) becomes more and more precise @s qnstant. In the following, we designaBedefined in(67) as

approaches. Bath’s constant. Note that this regi
. . . gime< m, corresponds to
As a bonus, we obtain the probabil@:(p) that the mag- the critical branching regime of close to 1(for a fixed

nitudem of the largest aftershock exceeds the source Magnfhagnitudep) and expresses the full effect of the cascade of

tudep, a situation that is usually classified in seismic cata+jgqered events over all possible generations. It is remark-

Iog_s by saying that the largest triggered event is e ple that the theory of the ETAS branching model predicts

mainshock and the spontaneous source that initiated the Sgse first part of Bath's law that the average of the difference

quence and all triggered events be.fore the largest aftershogltveen the magnitude of a mainshock and its largest after-

are foreshocks. Indee@.(p) is nothing but shock is independent of the mainshock magnitude. The spe-
cific value of Bath’s constar® depends on only two param-

Q«(p) = Qlplp:1). (63)  eters: theb value of the Gutenberg-Richter distribution and

the productivity exponend.

Interestingly, in the regimeny<p<m (i.e., for n suffi- The second asymptotic fan>m, corresponds to using
ciently close to 1 and/o& close tob) for which (57) holds, (60) to estimate(M ), which yields
p L

we obtain

14
Apmz =UVop— —
Q.(p) = const=Q. = 1 - exp(a—b), (64) W
b 1 (1-mb) v
R T
which is independent g and of the branching ratin. This b b n(b-a)/ In10
approximation is all the better, the closelis to b. Figure 6 (68)

shows the exacQ:(p) as a function ofp, which can be
compared with the constari64). One can observe that, at
least fora=0.95,0Q+(p) is actually quite close to the constant

(64) over all possible magnitudgs>m,. We propose to call > : .

. o ’ m, corresponds ta relatively far from 1(for a fixed p),
the pre'd_|ct|0n(64) thg second Bath law for foreshocks: the i.e., far from the critical branching regime, such that only a
probability that a main earthquake turns out to be the forez

; : few generations play a significant role in the population of
shock does not depend on its magnitydémore generally, : : - ; )
the distribution of the differenca—m does not depend qu), aftershocks. This asymptoti68) is also identical to the ex

pression(5) of [14] derived by using the statistical average of
the total numbeiN,; of aftershocks of all generations trig-
V. DERIVATION OF BATH'S LAW gered by a source of fixed given magnitude. Thus, the differ-
ence between this approximatié®8) [and expressiolb) of
The derivation of the distributiod8) and the approxima- [14]] and the exact expressi@f6) and its critical universal
tions (57) and (60) allow us to derive Bath's law by calcu- asymptotic(67) can be traced back to the difference between
lating the statistical average the following two kinds of averagestn[Na]) and IMN).

Note thatA,m, is increasing withp as in expressiort40),
corresponding to taking into account aftershocks of only the
first generation. This is natural since the asymptotic rfor
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1.5}

FIG. 7. Plot ofA,m given by the exact expressidf6) for « FIG. 8. Same as Fig. Texcept for the magnificationfor «
=0.9, b=1, and for different branching ratio. Top to bottom =0.95(y=1.05 giving B=1.11.

=0.8,0.85,0.9,0.95,0.99. With tending to 1, the average magni-

tude difference become closer to the theoretical Bath con&ant ] ) )
=0.83. ence between the magnitude of a mainshock and the magni-

tude of its largest aftershock over all generations. This aver-

Figures 7 and 8 show the exact average magnitude diffeiage magnitude difference is found empirically to be
ence(66) as a function of the mainshock magnitudefor  independent of the mainshock magnitude and equal to 1.2, a
b=1 and different values of the branching ratio for «  ynjversal behavior known as Bath's law. We have developed
=0.9 (Fig. 7) and a=0.95 (Fig. 8. As expected from the the mathematical formulation in terms of generating prob-
conditionm<m, or n closer to 1 at fixech so thatm; is all  apjlity functions that allow us to obtain exact equations and
the larger according t¢52), the largest values of give  yseful approximations to understand the physical basis for
almost constant values af m, in agreement with the predic- Bath's law. In particular, we find that the constancy of the
tion (67). For smallem’s, we can observe a slow crossover to ayerage magnitude differen¢® a value that we term Bath's
the second asymptoti€8). By comparison of Figs. 7 and 8, constanitis associated with the critical regime of the ETAS
it is clear that low values of are not compatible with Bath’s branching process. Allowing for error bars 0.1 for Bath’s
law. As confirmed with similar figures obtained for smaller constant value around 1.2, our exact analytical treatment of
a's, a value ofa at least equal to 0.9 seems necessary t®3th's law provides a new constraint on two key parameters
obtain a dependence afmroughly independent gf over a  of the ETAS model; namely, the productivity exponenand
large magnitude range. This bound is compatible with somene pranching ration: «=0.9 andn=0.8. We have sug-
previous studie§l15,16,21, but is in disagreement with oth- gested a method for measuring based on the predicted
ers[20,22. However, we should remark that such heterogeyenormalization of the Gutenberg-Richter distribution of the
neity in reported values of key parameters of the ETASmagnitudes of the largest aftershock. To implement this
model such as the productivity exponenttould be due to  method, statistical declustering techniques can be used to
the bias resulting from imperfect account of unobserved seiqdentify the spontaneous sources and their largest after-
micity below the completeness threshold, which may play &hocks. We have also proposed the “second Bath law for
dominant role as explained i23,24). Figure 8 also shows fgreshocks” that the probability that a main earthquake turns

that, the closen is to 1, the more independentdgm with oyt to be the foreshock does not depend on its magnigude
respect to the mainshock magnitupleHowever, due to in-

herent fluctuations in empirical data,can be as low as

=0.8 for =0.95 andA,m would still be slowly growing ACKNOWLEDGMENTS
between 1.1 and 1.3 over a large magnitude rangg, ab
that Bath's law would be approximately verified. This work is partially supported by NSF-EAR02-30429,
and by the Southern California Earthquake Cef&CEQ.
VI. CONCLUDING REMARKS SCEC is funded by NSF Cooperative Agreement EAR-

Using the ETAS branching model of triggered seismicity, 0106924 and USGS Cooperative Agreement 02HQAG0008.
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