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Using the epidemic-type aftershock sequencesETASd branching model of triggered seismicity, we apply the
formalism of generating probability functions to calculate exactly the average difference between the magni-
tude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude
difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal
behavior known as Båth’s law. Our theory shows that Båth’s law holds only sufficiently close to the critical
regime of the ETAS branching process. Allowing for error bars ±0.1 for Båth’s constant value around 1.2, our
exact analytical treatment of Båth’s law provides new constraints on the productivity exponenta and the
branching ration: 0.9&aø1 and 0.8&nø1. We propose a method for measuringa based on the predicted
renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also
introduce the “second Båth law for foreshocks:” the probability that a main earthquake turns out to be the
foreshock does not depend on its magnituder.
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I. INTRODUCTION

This paper is part of our continuing effort to develop a
complete theory of seismicity within models of triggered
seismicity, which allows one to make quantitative predictions
of observables that can be compared with empirical data
f1–3,6–8g. We study the general branching process, called
the epidemic-type aftershock sequencesETASd model of
triggered seismicity, introduced by Ogata in the present form
f9g and by Kagan and Knopoff in a slightly different form
f10g and whose main statistical properties are reviewed in
f2g. The ETAS model belongs to a general class of branching
processesf11,12g, and has in addition the property that the
variance of the number of earthquake progenies triggered in
direct lineage from a given mother earthquake is mathemati-
cally infinite. This model has been shown to constitute a
powerful null hypothesis to test against other modelsf9g. The
advantage of the ETAS model is its conceptual simplicity
based on three independent well-found empirical laws
sGutenberg-Richter distribution of earthquake magnitudes,
Omori law of aftershocks, and productivity lawd and its
power of explanation of other empirical observationsssee,
for instance,f3g and references thereind.

Here, we develop a theoretical formulation based on gen-
erating probability functionssGPFd to construct the distribu-
tion of magnitudes of the largest triggered eventslargest af-
tershockd within the cascade comprising all triggered events
of a given source earthquake. This allows us to derive the
empirical Båth’s lawf13,14g, which states that the average

difference in magnitude between a mainshock and its largest
aftershock is 1.2 regardless of the mainshock magnitude,
within a completely consistent theory taking into account all
generations of triggered events. Our present results signifi-
cantly improve on the numerical results off14g by demon-
strating the essential roles played by the cascade of triggered
events and the proximity to criticality in order to obtain
Båth’s law and by providing improved constraints on the key
parameters of the ETAS model. In addition, we extend
Båth’s law, which is a statement on the average magnitude
difference between the mainshock and its largest aftershock,
by giving the full distribution. Our theoretical framework
also allows us to calculate precisely the probability that the
largest aftershock turns out to be larger than its source, a
situation that is usually interpreted as the source and all
events before the largest aftershock being its foreshocks, the
largest aftershock being reinterpreted as the mainshock of the
seismic series.

The paper is organized as follows. Section II recalls the
definition of the branching model of triggered seismicity.
Section III presents the generating probability function and
results on the statistics of the largest aftershock among after-
shocks of the first generation. The GPF for first-generation
aftershocks is generalized to aftershocks of all generations in
Sec. IV. This allows us to predict that the distribution of
magnitudes of the largest aftershock over all aftershock gen-
erations is renormalized in the critical regime. This renor-
malization provides a way to calibrate the productivity pa-
rameter. Section V puts together previous results to calculate
the average difference in magnitude between the mainshock
and its largest aftershock over all generations. In the critical
regime, Båth’s law is shown to hold. The value of the aver-*Electronic address: sornette@moho.ess.ucla.edu
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age difference in magnitude allows us to offer improved con-
straints on the two key parameters of the ETAS model; the
critical branching ration and the productivity exponenta.
Section VI concludes.

II. THE EPIDEMIC-TYPE AFTERSHOCK SEQUENCE
BRANCHING MODEL OF EARTHQUAKES

Consider an earthquake of magnituder, which we refer to
as a mainshock, meaning that we are interested in the earth-
quakes that it triggerssaftershocksd. According to the ETAS
model, it generates a random numberRr

1 of first-generation
aftershocks, which has Poissonian statistics,

PrsRr
1d = e−km smkdRr

1

sRr
1d!

, s1d

characterized by the conditional average number

Nr = kmsrd, msrd = 10asr−m0d. s2d

Herem0 is the minimum magnitude of earthquake capable of
triggering other earthquakes, andk is a constant. Expression
s2d for msrd is chosen in such a way that it reproduces the
empirical dependence of the average number of aftershocks
triggered directly by an earthquake of magnitudem ssee
f15,16g and references thereind. Expressions2d gives the so-
called productivity law of a given mother as a function of its
magnituder.

The ETAS model requires the specification of the
Gutenberg-Richter density distribution of earthquake magni-
tudes

psmd = b lns10d10−bsm−m0d, mù m0, s3d

such thatem
`psxddx gives the probability that an earthquake

has a magnitude equal to or larger thanm. This magnitude
distribution psmd is assumed to be independent of the mag-
nitude of the triggering earthquake, i.e., a large earthquake
can be triggered by a smaller onef3g. The cumulativefPsmdg
and complementary cumulativefQsmdg distributions corre-
sponding tos3d are

Psmd = 1 −Qsmd, Qsmd = 10−bsm−m0d = fmsmdg−g,

g = b/a. s4d

The ETAS model is defined by the conditional Poisson
intensity given the average rate of seismicity at timet and
position r conditioned on all past earthquakes

lst,r d = sst,r d + o
i utiøt

msmidCst − tidfsr − r id, s5d

where sst ,r d is the average Poisson rate of spontaneous
earthquake sourcess“immigrants,” in the language of epi-
demic branching processesd at positionr and at timet. The
sum is over all past earthquakes: each earthquake is charac-
terized by its occurrence timeti, its magnitudemi, and its
location r i in the catalog. The two kernels,Cst− tid and
fsr −r id, whose integrals with respect to time and space,
respectively, are normalized to 1, describe the contribution of

the earthquake at timeti and positionr i to the seismic inten-
sity at timet in the future and at positionr .

III. STATISTICS OF THE LARGEST AFTERSHOCK
AMONG AFTERSHOCKS OF THE FIRST GENERATION

A. Generating probability function of aftershocks
of the first generation triggered by an arbitrary mainshock

The Poissonian statistics of the aftershocks of the first
generation implies that the generating probability function of
their numbers reads

Q1szurd = kzRr
1
l = o

r=0

`

Prsrdzr = ekmsrdsz−1d, s6d

where we have useds1d, and the angle brackets correspond
to statistical averaging.

Let M1,M2, . . . ,MR
r
1 be the random magnitudes of theRr

1

aftershocks of the first generation triggered by the main-
shock. Let us consider the statistical average defined by

Q1sz,murd =KzRr
1p
k=1

Rr
1

Hsm− MkdL , s7d

whereH is the Heaviside function. Using the Poissonian sta-
tistics of the random numberRr

1 of aftershock numbers and
the Gutenberg-Richter law for their magnitudes, we obtain

Q1sz,murd = o
r=0

`

PrsrdzrfPsmdgr = ekmfzPsmd−1g. s8d

Equations8d gives the GPF of the number of first-generation
aftershocks triggered by some source, whose magnitude is
equal tor. The main difference between the GPFQ1sz,murd
from the standard GPFQ1szurd given by s6d is that
Q1sz,murd in s8d describes the statistics only of the se-
quences of first-generation aftershocks, whose magnitudes
hM1,M2, . . . ,MR1

j are all smaller than some given magni-
tudem.

Notice thatQ1sz,murd can be rewritten as

Q1sz,murd = kzRr
1smdHsm− Mr

1dl, s9d

whereMr
1 is the largest magnitude over all aftershocks of the

first generation triggered by the mainshock andRr
1smd is the

number of aftershocks for those realizations of aftershocks in
which no aftershocks of the first generation exceed the mag-
nitude m. The transformation froms8d to s9d is an obvious
generalization of the following relation of order statistics
ssee, for instance,f4gd. Let us haveR1=r random values
hM1,M2, . . . ,MR1

j. The cumulative distribution of the largest
valueM1 in this set is then equal to

PrhM1 , mj = kHsm− M1dl =Kp
i=1

r

Hsm− MidL . s10d

The interest inQ1sz,murd in s8d,s9d lies in particular in
the fact that, forz=1, it reduces to the probabilityP1smurd
that the largest magnitude among all aftershocks of the first
generation is smaller thanm:
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P1smurd = Q1sz= 1,murd = PrhMr
1 , mj = e−kmsrdQsmd.

s11d

B. GPF of aftershocks of the first generation triggered
by a spontaneous source

Consider now some spontaneous sourcefcontributing to
the termsst ,r d in s5dg, with magnitudeM0. According to the
ETAS model, it triggers its own aftershocks sequence inde-
pendently of all other sequences. Let

M0, M1, M2, . . . ,MR1 s12d

be the random sequence of magnitudessincludingM0d of the
first-generation aftershocks triggered by the spontaneous
source. The GPF

Q1sz,md = kzR1smdHsm− M1dl, s13d

describing the statistics of the numberR1smd of aftershocks
of first generationstriggered by the spontaneous source of
arbitrary magnitudeM0d and their largest magnitudeM1

among the lists12d, can then be calculated following a for-
mula analogous tos8d. Specifically, we multiply both sides of
s8d by Hsm−rd and apply the statistical averaging, assuming
that r swhich in this context is the random magnitudeM0 of
the spontaneous sourced is a random variable distributed ac-
cording to the Gutenberg-Richter laws3d. In other words, we
calculate the GPFQ1sz,md using the relation

Q1sz,md = kHsm− rdQ1sz,murdl. s14d

Here, the angular brackets indicates the statistical average
with respect to the random magnituder of the spontaneous
source. Usings14d together with the right-hand sidesr.h.s.d
of Eq. s8d, we obtain

Q1sz,md =E
m0

m

ekmsrdfzPsmd−1gpsrddr. s15d

In order to calculate the integral, it is convenient to introduce
the auxiliary function

Fsy,xd =E
x

`

e−kmsrdypsrddr = −E
x

`

e−kmsrdydQsrd,

s16d

such that

Q1sz,md = F„1 − zPsmd,m0… − F„1 − zPsmd,m…. s17d

It follows from s4d and s16d that

Fsy,xd = gE
msxd

`

e−kmym−g−1dm = m−gsxdF„msxdy…, s18d

where

Fsyd = gE
1

`

e−kmym−g−1dm = gkgygGs− g,kyd. s19d

Substituting s18d into s17d and taking into account that
msm0d=1 yields the following expression:

Q1sz,md = F„1 − zPsmd… − fmsmdg−gF„msmdf1 − zPsmdg….

s20d

For m→`, the GPFQ1sz,md given by s20d reduces to the
standard GPF of the random numberR1 of aftershocks of the
first generation triggered by some spontaneous source, which
reads

Q1szd = Q1sz,m= `d = Fs1 − zd. s21d

In the following analysis, the functionFsyd in s19d plays a
crucial role. It is thus useful to state some of its analytical
properties. Recall thatGs−g ,xd in s19d is the incomplete
Gamma function, defined byGsa,xd=ex

`e−tta−1dt. Using the
Taylor series expansionf5g

Gsa,xd = Gsad − o
i=0

`
s− 1dixa+i

i!sa + id
s22d

yields

Fsyd = gGs− gdskydg + 1 −
g

g − 1
ky −

g

2s2 − gd
skyd2 + ¯ .

s23d

In the theory of aftershocks branching processes, the branch-
ing ratio n, equal to the average number of first-generation
aftershocks triggered by some mother earthquake, plays a
fundamental role since it controls the subcriticality vs super-
criticality of the process. It is defined as

n = UdQ1szd
dz

U
z=1

.

Together withs21d, it follows that

n = − UdFsyd
dy

U
y=0

=
kg

g − 1
, s24d

so that, for givenb, a, andn, the constantk in relations23d
can be replaced by

k = ksg,nd = nS1 −
1

g
D . s25d

We thus obtain the following first terms in the power expan-
sion of Fsyd:

Fsyd . 1 − ny+ byg − dy2, s26d

where

b = gGs− gdSn
g − 1

g
Dg

, d = n2 sg − 1d2

2gs2 − gd
. s27d

In our paper, we use the truncated relation

Fsyd . 1 − ny+ byg, s28d

which provides an accurate description ofFsyd for 1,g
&1.5 andy&0.2.

Taking z=1 in s20d yields the cumulative distribution
function sCDFd P1smd of the largest magnitudeM1 among
the sequences12d of aftershocks, including their spontaneous
source
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P1 = FsQd − m−gFsmQd. s29d

The GPFQ1sz,md in s20d describes the statistics of the
spontaneous source and its first-generation aftershocks, such
that all magnitudes, including the magnitude of the sponta-
neous source, are smaller thanm. In the following, we will
consider the possibility that the largest aftershock may be
larger than the source, a situation known in the seismological
literature as the occurrence of foreshockssseef3,17,18g and
references thereind. The corresponding GPF, averaged over

all possible foreshock magnitudes, is denoted asū1sz,md and
is obtained formally froms20d by taking the limitm→`:

ū1sz,md = F„1 − zPsmd…. s30d

C. Magnitude of the largest aftershock of the first-generation
aftershocks

Before analyzing the conditions under which the empiri-
cal Båth’s law can be obtained from the ETAS model, it is
useful to ask what is its analog when restricting the set of
aftershocks to the first generation of events triggered by the
source. This will provide a reference point against which to
gauge the impact of the multiple generations of aftershocks
on Båth’s law.

We start from expressions11d giving the CDFP1smurd of
the largest magnitudeMr

1 among all aftershocks of the first
generation. Substitutings2d,s4d in s11d, we obtain

P1smurd = Gfw0sm− r + v0dg, s31d

where

v0srd = S1 −
a

b
Dsr − m0d +

1

b
log10S b

nsb − adD ,

w0 = b ln 10, s32d

and

Gsxd = exps− e−xd s33d

is the well-known limiting extremal Gumbel CDF.
It follows from s31d in particular that the probability den-

sity function sPDFd of the difference

Dr
1 = r − Mr

1 s34d

between the sourcesmainshockd magnitude and the magni-
tude of its largest aftershock of the first generation is equal to

f1sdurd = w0g„w0sv0 − dd…, s35d

where

gsxd = exps− x − e−xd s36d

is the PDF associated with the CDFs33d. Note that the shape
and variance of the PDFs35d does not depend on the main-
shock magnituder. Only its modev0srd fmost probable
value of the differences34dg depends onr and increases
linearly with it according to the first equation ofs32d.

These results treat all aftershock sequences on the same
footing and in particular include sequences that have zero

aftershocks. In a real data analysis, the statistical properties
of the differences34d are obtained conditional on the obser-
vation of at least one aftershock, which requires a modifica-
tion of the expressions above. We are interested in modifying
the CDFs11d to eliminate the cases whereRr

1=0. This cor-
responds to obtaining the CDF of the largest magnitude of
first-generation aftershocks under the condition that the
mainshock triggers at least one aftershock:

P1smur;1d = 1 −Q1smur;1d, Q1smur;1d =
1 − e−kmsrdQsmd

1 − e−kmsrd .

s37d

The corresponding PDF of the differences34d reads

f1sdurd = w0
g„w0sv0 − dd…

1 − e−kmsrd , − ` , d , r − m0. s38d

The conditional CDFs37d differs significantly from the un-
conditional ones11d only if the probabilitye−kmsrd that there
are no aftershocks is close to 1. This occurs for small main-
shock magnitudes. How small should the mainshocks be for
this difference to be important? Let us define a magnitude
thresholdr0 by

kmsrd . 2 ⇒ r0 = m0 +
1

a
log10S 2b

nsb − adD . s39d

For mainshock magnitudesr.r0, the conditional CDFs37d
does not differ significantly from the unconditional ones11d.
In this case, relationss35d ands38d are approximately equal,
and the looked for distribution of the differences34d can be
taken to be the PDFs35d where dP s−` ,`d. Thus, for r
.r0, the average of the magnitude differences34d can be
approximated by

Dr
1m; r − kMr

1l . w0E
−`

`

dg„w0sv0 − dd…dd = v0srd − n/w0,

s40d

wheren.0.5772 is the Euler constant. Figure 1 shows the
exact average differenceDr

1m calculated withs38d, its ap-
proximation s40d valid for sufficiently large mainshocksr
.r0 and the most probable valueDr

1m* =v0srd of the differ-
ence in magnitude between the mainshock magnituder and
its largest aftershock. This figure is typical of the strong de-
pendence found for all reasonable values of the parameters
and distinguishes this result from the empirical Båth’s law
swhich gives a constant value independent ofrd.

IV. STATISTICS OF THE LARGEST AFTERSHOCK
AMONG AFTERSHOCKS OF ALL GENERATIONS

A. GPF of the aftershocks over all generations triggered
by a spontaneous source

Due to the mutual statistical independence of different
branches of triggered earthquakes in the ETAS model, one
can easily generalize the results for the largest aftershock of
the first generation to derive the statistical properties of the
largest aftershock over all generations.
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Within the ETAS branching model, taking into account all
aftershocks of all generations triggered by the mainshock,
amounts to replacing in the r.h.s. of Eq.s8d the PDFPsmd of
the magnitudes of single aftershocks by the GPFQsz,md for
all aftershocks triggered by some spontaneous source that
havestogether with the sourced magnitudes smaller thanm.
As a result, we obtain the sought GPF of the number of all
aftershocks triggered by the mainshock conditional on all
magnitudes being less thanm as

Qsz,murd = kzRrsmdHsm− Mrdl = ekmsrdfzQsz,md−1g. s41d

Here,Mr is the magnitude of the largest aftershock. In par-
ticular, the complementary CDF of the magnitude of the larg-
est aftershock reads

Qsmurd = kHsMr − mdl = 1 −e−kmsrdQsmd, s42d

whereQ is defined ins45d.
Similarly, the functional equation for the GPFQsz,md is

obtained by replacing ins20d both Q1 andPsmd by Qsz,md:

Qsz,md = F„1 − zQsz,md… − m−gsmdF„msmdf1 − zQsz,mdg….
s43d

For z=1, Eq.s43d reduces to an equation for the CDFPsmd
of the magnitudeM of the largest eventsincluding all after-
shocks and the sourced defined as

Qsz= 1,md = Psmd = PrhM , mj. s44d

This equation reads

P = FsQd − m−gFsmQd, Qsmd = 1 − Psmd. s45d

The difference betweens45d and s29d is that s45d is an im-
plicit equation forP while, in s29d, P1 is an explicit function

of the Q defined ins4d. Notice that in the limitm→`, Eq.
s43d reduces to the well-known functional equation

Q = Q1szQd s46d

for the standard GPF

Qsz,m= `d = Qszd = kzRl s47d

of the random numberR of all aftershocks triggered by some
ancestor, which has been studied inf6,8g.

Similar to the reasoning leading tos37d, the conditional
probability that the magnitude of the largest aftershock ex-
ceedsm, under the condition that the mainshock triggers at
least one aftershock, is

Qsmur;1d =
1 − e−kmsrdQsmd

1 − e−kmsrd , Qsmd = 1 − Psmd. s48d

It is also of interest to obtain the GPFQ̄sz,md of the
number of aftershocks of all generations with magnitudes
smaller thanm that are triggered by some spontaneous
source of arbitrary magnitude. It is given by replacing in the
r.h.s. of Eq.s30d Psmd by the GPFQsz,md given by s43d,
which yields

Q̄sz,md = F„1 − zQsz,md…. s49d

For z=1, this gives the probabilityP̄smd that the magnitude
of the largest aftershock triggered by an arbitrary spontane-
ous source is smaller thanm:

P̄smd = F„Qsmd…. s50d

FIG. 1. Exact average of the
differenceD1m=r−kMr

1l obtained
using s38d sbottom curve bending
down for small r−m0d, its large
magnitude approximation s40d
sbottom straight lined and the dif-
ferenceDr

1m* =v0srd between the
mainshock magnituder and the
mode of the magnitude of the
largest aftershock among all after-
shocks of the first generationsup-
per straight lined, for n=0.9, a
=0.8, andb=1.
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B. Distribution of the magnitude of the largest aftershock
of a spontaneous earthquake source of arbitrary magnitude

All quantities defined above require the knowledge of
Qsmd, which has a straightforward statistical meaning: it is
the complementary CDF of the magnitude of the largest af-
tershock of a spontaneous source of arbitrary magnitudesin
other words, over all possible source magnitudesd. It is easy
to calculateQsmd by solving Eq.s45d numerically. We can
also use the algebraic approximations28d of the function
Fsyd to obtain an explicit and rather precise analytic expres-
sion of Qsmd. Indeed, substitutings28d into s45d yields

Qsmd .
1

s1 − ndfmsmdgg + nmsmd
. s51d

This expression shows that there is a crossover magnitude
mc, given by

msmcd . S n

1 − n
D1/sg−1d

⇒ mc . m0 +
1

b − a
log10S n

1 − n
D ,

s52d

separating two regimes with different power laws forQsmd.
The first regime

Qsmd .
1

n
10−asm−m0d, m& mc, s53d

corresponds to a complementary CDF decaying more slowly
than the Gutenberg-Richter laws3d,s4d, for a,b. In the criti-
cal casen=1, mc=` and this regimes53d holds for anym
.m0. The second regime recovers the Gutenberg-Richter
law

Qsmd .
1

1 − n
10−bsm−m0d, m* mc. s54d

Figure 2 shows the logarithmsin base 10d of the complemen-
tary CDF Qsmd as a function ofm−m0 and the two power
law asymptoticss53d ands54d. We have thus shown that the
Gutenberg-Richter law can be renormalized from a bare ex-
ponentb to a smaller exponenta when the distribution is
restricted to the set of largest aftershocks of spontaneous
earthquakes of arbitrary magnitudes. This renormalization of
the b value fromb to a is intrinsically a cascade phenom-
enon. In other words, it results from the existence of a cas-
cade of triggered earthquakes over many generations, as
shown in detail inf6g. This renormalization proceeds by a
mechanism similar to that of thep value of the Omori law
from a value 1+u to 1−u f1,2g. It is different from the
mechanism leading to an exponentb−a for the asymptotic
branch of the Gutenberg-Richter distribution of all fore-
shocksf18g.

This predictions53d offers a method for measuring the
key exponenta controlling the productivity or triggering ef-
ficiency of earthquakes as a function of their magnitude, ac-
cording tos2d. What is needed to implement this method is a
declustering technique to identify the spontaneous sources
and their largest aftershocks. The statistical declustering
technique of Zhuanget al. f19,20g seems to be particularly
suitable for this purpose.

Due to the independence between the aftershock se-
quences of different sources in the ETAS model, it is
straightforward to obtain the probability distribution of the
largest triggered events among a set ofr spontaneous
sources. The corresponding complementary CDF, giving the

FIG. 2. Plot of the decimal
logarithm of the exact CDFQsmd
and its approximations51d swhich
actually coincided for n=0.9, a
=0.8, andb=1. Straight lines cor-
respond to the asymptoticss53d
and s54d.
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probability that the largest event triggered over all genera-
tions by r sources is larger thanm, is equal to

Q̄smurd = 1 −Fr
„Qsmd…. s55d

Figure 3 plotsQ̄smu rd as a function ofm−m0, for r running
from 1 to 15 for a=0.8, b=1 and for two values ofn: n
=0.9 andn=1. It is clear that most of the largest triggered
events in aftershock sequences are very small, simply due to
the interplay of two factors: most random sources are them-
selves small and have a small productivity, and the
Gutenberg-Richter distribution makes it much more probable
that all triggered events have small magnitudes.

C. Distribution of the magnitude of the largest aftershock
of a spontaneous earthquake source

of fixed magnitude r

Rather than considering arbitrary source magnitudes, it is
interesting to determine the complementary CDFQsmur ,rd
of the magnitude of the largest event triggered byr sponta-
neous sources with fixed magnitudesr1,r2, . . . ,rr. It is
closely approximated by

Qsmur,rd . 1 − expF− kQsmdo
i=1

r

msridG . s56d

In the following, we restrict our analysis to the case of a
single r =1 spontaneous source which fixed magnituder. In
this case, expressions56d transforms intos42d.

For m,mc, where the crossover magnitudemc is defined
by s52d, expressions42d can be simplified by replacing the
exactQsmd by the approximations53d, which gives

Qsmurd . 1 − G„w1sm− r + v1d…, m0 , m& mc.

s57d

where

v1 =
1

a
log10S b

b − a
D, w1 = a ln 10. s58d

Expressions57d can be further simplified into

Qsmurd .
k

n
10−asm−rd = sk10asr−m0dd 3 S1

n
10−asm−m0dD ,

s59d

in the tail of Qsmurd, i.e., for r−s1/adlog10sn/kd,m. The
rewriting of Qsmurd under the form shown by the last equal-
ity in s59d clarifies its origin: the first factork 10asr−m0d is
nothing but the productivity laws2d; the second factor
s1/nd10−asm−m0d is the renormalized Gutenberg-Richter law
s53d.

For m.mc, we obtain another approximation forQsmurd
by replacing in the r.h.s. of Eq.s42d the complementary CDF
Qsmd by the approximations54d, which yields

Qsmurd . 1 − G„w2fm− r + v2srdg… m* mc, s60d

where

v2 = S1 −
a

b
Dsr − m0d +

1

b
log10S bs1 − nd

nsb − adD, w2 = b ln 10.

s61d

FIG. 3. Complementary CDF
s55d of the magnitude of the larg-
est event triggered byr spontane-
ous sources with random magni-
tudes chosen according to the
Gutenberg-Richter distribution.
The different curves correspond to
r =1,3,5,7,9,11,13,15 from
bottom to top. Each pair of curves
corresponds ton=0.9 and n=1,
respectively.
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The following approximation including both regimesm
,mc, m.mc and lawss57d,s60d is obtained froms42d by
replacingQsmd by the approximations51d

Qsmurd . 1 − expS−
kmsrd

s1 − ndmgsmd + nmsmdD . s62d

Figures 4 and 5 present the dependence of the comple-
mentary CDFQsmurd as a function of the magnitude of the
largest event triggered by a spontaneous source of fixed mag-
nituder, for four different values ofr. The figures show the
exactQsmurd obtained numerically, its approximations62d
swhich is actually undistinguishable from the exact oned, and

FIG. 4. Exact complementary
CDF’s Qsmurd given by s42d
slower curvesd, their approxima-
tions s62d swhich are actually un-
distinguishable from the exact
functionsd and the universal ap-
proximationss57d supper curvesd,
for n=0.9, b=1, and a=0.8 sg
;b/a=1.25d for four different
values of the spontaneous source
magnituder.

FIG. 5. Same as Fig. 4 fora
=0.9 sg=1.11d.
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the universal approximations57d. The comparison between
Fig. 4 sfor a=0.8d and Fig. 5sfor a=0.9d shows that the
approximations57d becomes more and more precise asa
approachesb.

As a bonus, we obtain the probabilityQ*srd that the mag-
nitudem of the largest aftershock exceeds the source magni-
tude r, a situation that is usually classified in seismic cata-
logs by saying that the largest triggered event is the
mainshock and the spontaneous source that initiated the se-
quence and all triggered events before the largest aftershock
are foreshocks. Indeed,Q*srd is nothing but

Q*srd ; Qsrur;1d. s63d

Interestingly, in the regimem0,r,mc si.e., for n suffi-
ciently close to 1 and/ora close tobd for which s57d holds,
we obtain

Q*srd . const =Q* = 1 − expSa − b

b
D , s64d

which is independent ofr and of the branching ration. This
approximation is all the better, the closera is to b. Figure 6
shows the exactQ*srd as a function ofr, which can be
compared with the constants64d. One can observe that, at
least fora=0.95,Q*srd is actually quite close to the constant
s64d over all possible magnitudesr.m0. We propose to call
the predictions64d the second Båth law for foreshocks: the
probability that a main earthquake turns out to be the fore-
shock does not depend on its magnituder smore generally,
the distribution of the differencer−m does not depend onrd.

V. DERIVATION OF BÅTH’S LAW

The derivation of the distributions48d and the approxima-
tions s57d and s60d allow us to derive Båth’s law by calcu-
lating the statistical average

Drm= r − kMrl, s65d

where Mr denotes the magnitude of the largest aftershock
among all events of all generations triggered by the source of
fixed magnituder. Recall that Båth’s law states thatDrm is
independent ofr and equal to 1.2.

Within the ETAS model, the exact value ofDrm is ob-
tained as

Drm= r −E
m0

`

Qsmur;1ddm, s66d

whereQsmur ;1d is given bys48d and the r.h.s. ofs66d ex-
presses the fact that the average is performed over sequences
with at least one aftershock.

The two regimes—m,mc giving the asymptotics57d and
m.mc giving the asymptotics60d—provide two asymptotic
expressions forDrm. Indeed, calculatingkMrl using the ap-
proximation s57d and neglecting the boundary effectsfi.e.,
supposing thatmP s−` ,`dg yields

Drm1 . v1 −
n

w1
= B =

1

a
Flog10S b

b − a
D −

n

ln 10
G , s67d

which is independent ofr. Recall thatn.0.5772 is Euler’s
constant. In the following, we designateB defined ins67d as
Båth’s constant. Note that this regimem,mc corresponds to
the critical branching regime ofn close to 1sfor a fixed
magnituderd and expresses the full effect of the cascade of
triggered events over all possible generations. It is remark-
able that the theory of the ETAS branching model predicts
the first part of Båth’s law that the average of the difference
between the magnitude of a mainshock and its largest after-
shock is independent of the mainshock magnitude. The spe-
cific value of Båth’s constantB depends on only two param-
eters: theb value of the Gutenberg-Richter distribution and
the productivity exponenta.

The second asymptotic form.mc corresponds to using
s60d to estimatekMrl, which yields

Drm2 . v2 −
n

w2

= S1 −
a

b
Dsr − m0d +

1

b
Flog10S s1 − ndb

nsb − adD −
n

ln 10
G .

s68d

Note thatDrm2 is increasing withr as in expressions40d,
corresponding to taking into account aftershocks of only the
first generation. This is natural since the asymptotic form
.mc corresponds ton relatively far from 1sfor a fixed rd,
i.e., far from the critical branching regime, such that only a
few generations play a significant role in the population of
aftershocks. This asymptotics68d is also identical to the ex-
pressions5d of f14g derived by using the statistical average of
the total numberNaft of aftershocks of all generations trig-
gered by a source of fixed given magnitude. Thus, the differ-
ence between this approximations68d fand expressions5d of
f14gg and the exact expressions66d and its critical universal
asymptotics67d can be traced back to the difference between
the following two kinds of averages:klnfNaftgl and lnkNaftl.

FIG. 6. Plot ofQ*srd as a function ofr, for n=0.9, b=1, and
different values ofa. The horizontal lines correspond to the con-
stants predicted bys64d.
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Figures 7 and 8 show the exact average magnitude differ-
ences66d as a function of the mainshock magnituder for
b=1 and different values of the branching ration, for a
=0.9 sFig. 7d and a=0.95 sFig. 8d. As expected from the
conditionm,mc or n closer to 1 at fixedr so thatmc is all
the larger according tos52d, the largest values ofn give
almost constant values ofDrm, in agreement with the predic-
tion s67d. For smallern’s, we can observe a slow crossover to
the second asymptotics68d. By comparison of Figs. 7 and 8,
it is clear that low values ofa are not compatible with Båth’s
law. As confirmed with similar figures obtained for smaller
a’s, a value ofa at least equal to 0.9 seems necessary to
obtain a dependence ofDrm roughly independent ofr over a
large magnitude range. This bound is compatible with some
previous studiesf15,16,21g, but is in disagreement with oth-
ers f20,22g. However, we should remark that such heteroge-
neity in reported values of key parameters of the ETAS
model such as the productivity exponenta could be due to
the bias resulting from imperfect account of unobserved seis-
micity below the completeness threshold, which may play a
dominant role as explained inf23,24g. Figure 8 also shows
that, the closern is to 1, the more independent isDrm with
respect to the mainshock magnituder. However, due to in-
herent fluctuations in empirical data,n can be as low asn
=0.8 for a.0.95 andDrm would still be slowly growing
between 1.1 and 1.3 over a large magnitude range ofr, so
that Båth’s law would be approximately verified.

VI. CONCLUDING REMARKS

Using the ETAS branching model of triggered seismicity,
we have shown how to calculate exactly the average differ-

ence between the magnitude of a mainshock and the magni-
tude of its largest aftershock over all generations. This aver-
age magnitude difference is found empirically to be
independent of the mainshock magnitude and equal to 1.2, a
universal behavior known as Båth’s law. We have developed
the mathematical formulation in terms of generating prob-
ability functions that allow us to obtain exact equations and
useful approximations to understand the physical basis for
Båth’s law. In particular, we find that the constancy of the
average magnitude differencesto a value that we term Båth’s
constantd is associated with the critical regime of the ETAS
branching process. Allowing for error bars ±0.1 for Båth’s
constant value around 1.2, our exact analytical treatment of
Båth’s law provides a new constraint on two key parameters
of the ETAS model; namely, the productivity exponenta and
the branching ration: a*0.9 andn*0.8. We have sug-
gested a method for measuringa based on the predicted
renormalization of the Gutenberg-Richter distribution of the
magnitudes of the largest aftershock. To implement this
method, statistical declustering techniques can be used to
identify the spontaneous sources and their largest after-
shocks. We have also proposed the “second Båth law for
foreshocks” that the probability that a main earthquake turns
out to be the foreshock does not depend on its magnituder.
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FIG. 8. Same as Fig. 7sexcept for the magnificationd for a
=0.95 sg.1.05d giving B=1.11.

FIG. 7. Plot ofDrm given by the exact expressions66d for a
=0.9, b=1, and for different branching ratio. Top to bottomn
=0.8,0.85,0.9,0.95,0.99. Withn tending to 1, the average magni-
tude difference become closer to the theoretical Båth constantB
=0.83.
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